Temporal Data Streams for Anomaly Intrusion Detection (Extended Version)
نویسندگان
چکیده
Intrusion detection systems (IDS) aim to protect computer systems against attacks. The detection methods employed in anomalybased IDS are based, in particular, on monitoring networks for patterns of activity that differ from normal behaviour. Issues to be addressed with anomaly-based systems include deciding and representing what constitutes normal behaviour as well as being able to detect deviations from this efficiently in high speed networks. Here we describe an approach to anomaly-based intrusion detection utilising temporal logic and stream data processing. Temporal logic is used to specify the normality conditions which, after translation into data stream queries, are efficiently executed on streams of network packets. The proposed approach allows the concise representation of patterns of normal behaviour, possibly involving multiple steps, as well as being able to detect their violations over a high volume of data in high speed networks.
منابع مشابه
Moving dispersion method for statistical anomaly detection in intrusion detection systems
A unified method for statistical anomaly detection in intrusion detection systems is theoretically introduced. It is based on estimating a dispersion measure of numerical or symbolic data on successive moving windows in time and finding the times when a relative change of the dispersion measure is significant. Appropriate dispersion measures, relative differences, moving windows, as well as tec...
متن کاملOnline and adaptive anomaly Detection: detecting intrusions in unlabelled audit data streams
Intrusion detection has become a widely studied topic in computer security in recent years. Anomaly detection is an intensive focus in intrusion detection research because of its capability of detecting unknown attacks. Current anomaly IDSs (Intrusion Detection System) have some difficulties for practical use. First, a large amount of precisely labeled data is very difficult to obtain in practi...
متن کاملAssessment Methodology for Anomaly-Based Intrusion Detection in Cloud Computing
Cloud computing has become an attractive target for attackers as the mainstream technologies in the cloud, such as the virtualization and multitenancy, permit multiple users to utilize the same physical resource, thereby posing the so-called problem of internal facing security. Moreover, the traditional network-based intrusion detection systems (IDSs) are ineffective to be deployed in the cloud...
متن کاملAnomaly Detection over Concept Drifting Data Streams
Outlier detection over data streams has attracted attention for many emerging applications, such as network intrusion detection, web click stream and aircraft health anomaly detection. Since the data stream is likely to change over time, it is important to be able to modify the outlier detection model appropriately with the evolution of the stream. Most existing approaches were using incrementa...
متن کاملProcessing of massive audit data streams for real-time anomaly intrusion detection
Intrusion detection is an important technique in the defense-in-depth network security framework. Most current intrusion detection models lack the ability to process massive audit data streams for real-time anomaly detection. In this paper, we present an effective anomaly intrusion detection model based on Principal Component Analysis (PCA). The model is more suitable for high speed processing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016